

Road-Stream Crossing Design Manual Training

March 2022

Rhode Island Stream Crossings

- Approximately 3,578 miles of riverine ecosystems in Rhode Island
 - Currently an estimated 4,300+ road and railroad crossings affecting Rhode Island streams.
 - Many crossings do not allow for the natural movement of water, sediment, and migratory species due to poor hydraulic and ecological design.
- Common problems at existing crossings
 - Clogging, high or low velocities, perched crossings, ponding or flooding, scour, undersized and unnatural or no bed material.

Example of perched crossing

Example of undersized crossing

Purpose of the Manual

- Provide specific <u>standards</u> for Rhode Island streams
- Required for all <u>RIDOT-owned</u> road-stream crossings
 - Strongly encouraged for other RI state agencies, municipalities, regulators, and stream crossing designers
- Avoid "in-kind" replacement with more holistic approach
 - Enhance aquatic organism passage ("AOP") and stream continuity
 - Provide safer, cost-effective, low maintenance, and resilient stream crossings

Development of the Manual

- Literature Review
 - VHB team reviewed 30+ documents on industry standards, state guidance, and the most recently available research.
- Stakeholder Meetings
 - Members from EPA, National Marine Fisheries Service, National Park Service, RI Coastal Resources Management Council, RI Department of Environmental Management, U.S. Army Corps of Engineers, and U.S. Fish and Wildlife Service.

When are you expected to use the Manual?

- Now! Effective <u>10/15/21</u>
 - The Manual must be used to design all RIDOT-owned stream crossings (new, replacement, or retrofit)
- Replacement/Retrofit Process:
 - 1. RIDOT 2019 Stream Assessment Handbook (not required but highly encouraged)
 - 2. Design using the new Manual
 - 3. Re-Assess with RIDOT 2019 Assessment Handbook
- Emergency replacement projects
 - Use the Manual when feasible with RIDOT approval

Key Methods

What this Manual is Not:

- A design guide for stormwater and other drainage pipes
- A replacement for the RIDOT Bridge Inspection Manual, the RIDOT Linear Stormwater Manual, or the Rhode Island Stormwater Design and Installation Standards Manual
- \bigotimes
- A guide for structural or geotechnical design and analysis of bridges, arches, or culverts
- X
- An assessment guide for prioritizing stream crossing replacement

A stream crossing permitting guidebook – RIDEM will evaluate each crossing

- on a case-by-case basis and there may be additional requirements
- A guide for floodplain management or analysis

The Design Standards

- Two levels of Design Standards for each Design Criteria:
 - New or replacement crossings should always aim to meet the **Optimal Standard** for each Design Criteria.
 - <u>With RIDOT approval</u>: A crossing may meet the <u>Optimal</u>
 <u>Standard</u> for some Design Criteria and only meet the <u>Base</u>
 <u>Standard</u> for other Design Criteria.
- Focus on "Stream Simulation" Design
 - Approach from USFS Stream Simulation document (2008)
 - Goal to create a stream crossing that mimics the characteristics of the natural channel in as many facets as possible.

The Design Standards

The Design Criteria

Design Criteria – 1. Design Approach

Design Criteria – 2. Structure Type

Optimal Standard

 Bridge, 3-sided box culverts, openbottom/arch culverts

Base Standard		RIDOT Approval Required	
• Pipe culvert or box culvert with			
	embedment		

Bridge

3-Sided Box Culvert

Pipe Culvert

Design Criteria – 3. Channel Velocities

Optimal Standard

- Velocity within the swimmable range of (AOP) target species (or comparable to a reference reach) at bankfull flow and range of base flows (if no target species).
- Include AOP study for target species (when applicable).

Base Standard RIDOT Approval Required

 Velocity comparable to natural channel at bankfull flow.

Juvenile brook trout (Source: RIDEM)

Design Criteria – 4. Climate Change

Requires the proposed design to pass the future Design Storm according based upon span & the highway functional classification of the roadway.

Highway Functional Classification ⁶	Flood Frequency Requirem	ents ⁷	Design Storm Freeboard Requirements	Climate Change Projection Horizon ^{8,9,10}
		Spai	n Less than 10 feet	
All Classes	Design Storm: 10% AEP		No freeboard required	Pass the design storm for the projections of the end
	Design Scour: 4% AEP			of the service life: 75-year Horizon (unless crossing
	Check Scour: 2% AEP			is atypical)
	Climate Check: 4% AEP	_		
		Sp	oan 10 to 20 feet	
Rural Minor Collector	Design Storm: 10% AEP		1-foot	Pass the design storm for the projections of the end
Rural Local	Design Scour: 4% AEP			of the service life
Urban Collector/Local Bike	Check Scour: 2% AEP	3	This life available	
or Walking Path	 Climate Check: 4% AEP 			
Rural Major Collector	Design Storm: 4% AEP	For projections at end of service life	2-feet	Pass the design storm for the projections of the end
Urban Minor Arterial	Design Scour: 2% AEP	B) Or this		of the service life
	Check Scour: 1% AEP		=/	
	 Climate Check: 2% AEP 			If Available
Rural Principal Arterial	Design Storm: 2% AEP		2-feet	Pass the design storm for the projections of the end
Rural Minor Arterial	Design Scour: 1% AEP			of the service life
Urban Principal Arterial	Check Scour: 0.5% AEP			
Or Any Structure on the NHS	Climate Check: 1% AEP		•••	

Span 20 feet or Greater

Example: If the crossing is a 15-foot span Rural Major Collector with a planned construction year of 2025 and a service life of 75-years, then the Climate Change Projection Horizon is 75-years, and the designer must find the most applicable and up-to-date sea level rise and precipitation projections for the year 2100 and design the crossing to pass the 2100 4% AEP tidal event (if tidally influenced) and the 2100 4% AEP precipitation event. If 2100 projections are not available, the Climate Check Event is utilized, the project

must pass the Current Day 2% AEP Check flood.

Recommended Projection Sources: RI CRMC, RI Climate Change Office, IPCC, NOAA, NECASC

Design Criteria – 5. Crossing Profile

Optimal Standard	Base Standard	RIDOT Approval Required
Crossing profile to match existing	Crossing profile to r	match existing
natural stream using reference reach	natural stream grac	le upstream and/or
and vertical adjustment potential (VAP).	downstream of the	crossing location.

Driven to get vou there

Design Criteria – 6. Embedment, Substrate, and Channel Stability

Bank

Toe

Channel Thalweg

Optimal Standard

- Open-bottom structures have ≥ 1 foot of natural substrate material above any required scour protection material.
- Include scour stability analysis and grain size analysis
- Channel cross section within the crossing designed to mimic low flow depths of natural channel.

Base Standard RIDOT Approval Required

- Closed-bottom crossings ≥ 8 feet in span must have min. embedment of 2 feet.
 Crossings < 8 feet in span must have a min.
 embedment of 25% of the opening height
- Channel cross section designed within the crossing to mimic low flow depths of natural channel.

Recommended Soil Sample Locations provided within the Manual

Design Criteria – 7. Hydraulic Modeling

Optimal Standard			
HEC-RAS (or equivalent) analysis			
required.			

Source: U.S. Army Corps of Engineers, 2021

Base Standard	RIDOT Approval Required
HY-8, CulvertMaster	, HydroCAD, (or
equivalent) analysis	required.

Design Criteria – 8. Openness Ratio

Optimal Standard	Base Standard	DOT Approval Required	
Openness ratio \geq 1.64 feet and Height \geq	Openness ratio ≥ 0.82 fe	eet to the	
6 feet. If conditions significantly inhibit	maximum extent praction	cable.	
wildlife, use openness of \geq 2.46 feet and			
height ≥ 8 feet			
$Openness = \frac{Cross Sectional Area (ft^2)}{Length (Ft)}$			
Cross Sectional Area —	Length		

Design Criteria – 9. Stream Crossing Span

Optimal Standard	Base Standard RIDOT Approval Required
Hydraulic span ≥ 1.2 x BFW with banks	Hydraulic span ≥ 1.2 x BFW with banks
on both sides designed for applicable	on both sides.
wildlife passage.	

Span = 1.2 x Bankfull Width

Additional guidance for span alignment and placement relative to the stream alignment is included within the Manual

Design Criteria – 10. Structural Stability

Optimal & Base Standards

Design in accordance with Rhode Island and AASHTO LRFD standards. Structural design includes appropriate loading including streamflow, span configuration and freeboard, wingwall layout and design, and footing design.

Design Criteria – 11. Tidal/Coastal Modeling

Optimal Standard

- Velocity comparable to natural channel during the ebb and flow for <u>high tide or</u> <u>maximum flow conditions</u> & <u>low tide or</u> <u>low flow conditions</u> using a detailed unsteady hydraulic modeling analysis.
- Includes AOP study

Base StandardRIDOT Approval
Required•Designed to accommodate the
exchange of the full tidal prism
using a simplified quantitative
analysis (i.e., spreadsheet).

Tidally influenced crossings must consider precipitation changes <u>and</u> sea level rise.

Source: NHDES, 2017

Design Criteria – 12. Reporting Requirements

Optimal & Base Standards

Required as part of the RIDOT 30% Design Submission:

- 1. Geotechnical Investigation
- 2. Hydrologic and Hydraulic Computations
- 3. Road-Stream Crossing Standards Review Checklist(s)
 - Checklist A.1 Existing Conditions (if applicable) and

A.2 Proposed Conditions

- 4. Table A.3 Hydraulic Design Data
- 5. The applicable Conceptual Design Figure
- 6. Road-Stream Crossing Report

Templates provided

in Manual

Checklist A.1 Existing Conditions

Bridge # and/or Group #, Roadway Name, Waterbody Name and Town Name:				
Design Criteria	Optimal Standards	Base Standards		
Structure Type	Bridge 3-Sided Box Culvert Open-Bottom Culvert Arch Culvert Binned Overall Geomorphic Impact Score 23	Pipe Culvert with Embedment Box Culvert with Embedment		
	Existing crossing does not meet Base or Optimal Standards. Structure type:			
Channel Velocities	Velocity within the swimmable range of target species Velocity comparable to reference reach at bankfull flow and range of base flows (if no target species present) AOP study for target species Binned Aquatic Possobility Score ≥3	Velocity comparable to natural channel at bankfull flow		
Climate Change	Hydraulic capacity designed for sea level rise and/or increased precipitation projections based upon Hydraulic Design	Requirements		
Crossing Profile	Crossing profile matches existing natural stream based upon reference reach Profile designed using vertical adjustment potential (VAP) Binned Aquatic Passability Score ≥3	Crossing profile to match existing natural stream grade upstream and/or downstream of the crossing location		
	Existing crossing does not meet Base or Optimal Standards. Description of crossing profile:			
Embedment, Substrate and Channel Stability	1 foot (minimum) of natural substrate material above any required scour protection material Channel cross section designed to mimic low flow depths of natural channel Included grain size analysis and bed mobility/scour stability analysis Binned Overall Geomorphic Impact Score or Binned Aguatic Passability Score ≥3	Natural bottom substrate ≥ 2 feet for all structures ≥ 8 feet in span; ≥ 25% of opening height for all spans < 8 feet. Channel cross section designed to mimic low flow depths of natural channel		
embedment deport.	Existing crossing does not meet Base or Optimal Standards.			
Hydraulic Modeling	HEC-RAS Equivalent Software: Binned Transportation Disruption Scare ≥3	HY-8 CulvertMaster HydroCAD Equivalent Software:		
Openness Ratio	Openness ratio ≥ 1.64 feet and height ≥ 6 feet If conditions significantly inhibit wildlife, openness of ≥ 2.46 feet and height ≥ 8 feet Binned Aquatic Passability Score ≥4	Greater than or equal to 0.82 feet to the maximum extent practicable		
	Existing Crossing does not meet Base or Optimal Standards.			
Stream Crossing Span Bankfull width: Crossing span:	Hydraulic span greater than or equal 1.2 × BPW with banks on both sides designed for applicable wildlife passage. Binned Rood Impact Potential Score ≥3	Hydraulic span greater than or equal to 1.2 x 8FW with banks on both sides		
	Existing crossing does not meet Base or Optimal Standards.			
Structural Stability	Designed in accordance with Rhode Island and AASHTO LRFD standards. Structural design includes appropriate loading including streamflow, span configuration and freeboard, wingwall layout and design, and footing design. Unknown			
Tidal/Coastal Guidance	Non-tidal Velocity comparable to natural channel during the ebb and flow for high tide or maximum flow conditions and low tide/low flow conditions based upon a detailed unsteady hydraulic modeling analysis. Binned Climate Change Vulnerability Score x3	 Non-tidal Designed to accommodate the exchange of the full tidal prism using a simplified quantitative analysis (i.e. spreadsheet) 		

Checklist A.2 Proposed Conditions

*, Roadway Name, Waterbody Name and Town Name:			
Optimal Standards	Base Standards	Replacement Crossing: MEP Elaborate on reason for MEP within Road-Stream Crossing Report	
Stream Simulation	AOP Design Modified Hydraulic Design	Maximum Extent Practicable	
Bridge 3-Sided Box Culvert Open-Bottom Culvert Arch Culvert	Pipe Culvert with Embedment Box Culvert with Embedment	Maximum Extent Practicable	
Velocity within the swimmable range of target species Velocity comparable to reference reach at bankfull flow and range of base flows (if no target species present) AOP study for target species	Velocity comparable to natural channel at bankfull flow	Maximum Extent Practicable	
Designed for sea level rise and/or increased precipitation projections based upon Hydraulic Design Requirements			
Crossing profile matches existing natural stream based upon reference reach Profile designed using vertical adjustment potential (VAP)	Crossing profile to match existing natural stream grade upstream and/or downstream of the crossing location	Maximum Extent Practicable	
1 foot (minimum) of natural substrate material above any required scour protection material Channel cross section designed to mimic low flow depths of natural channel Includes grain size analysis and bed mobility/scour stability analysis	Natural bottom substrate ≥ 2 feet for all structures ≥ 8 feet in span; ≥ 25% of opening height for all spans < 8 feet Channel cross section designed to mimic low flow depths of natural channel	Maximum Extent Practicable	
HEC-RAS	□ HY-8 □ CulvertMaster □ HydroCAD □ Equivalent Software:	Maximum Extent Practicable	
□ Openness ratio ≥ 1.64 feet and height ≥ 6 feet □ If conditions significantly inhibit wildlife, openness of ≥ 2.46 feet and height ≥ 8 feet	Greater than or equal to 0.82 feet to the maximum extent practicable		
Hydraulic span greater than or equal 1.2 x BFW with banks on both sides designed for applicable wildlife passage.	Hydraulic span greater than or equal to 1.2 x BFW with banks on both sides	Maximum Extent Practicable	
Design in accordance with Rhode Island and AASHTO LRFD standards. Structural design includes appropriate loading including streamflow, span configuration and freeboard, wingwall layout and design, and footing design. Hydraulic modeling and geotechnical analysis provide direction on foundation requirements and site-specific scour mitigation measures.			
Non-tidal Velocity comparable to natural channel during the ebb and flow for high tide or maximum flow conditions and low tide/low flow conditions based upon a detailed unsteady hydraulic modeling analysis.	Non-tidal Designed to accommodate the exchange of the full tidal prism using a simplified quantitative analysis (i.e. spreadsheet)		
Road-Stream Crossing Report (with H&H computations), Geotechnical Investigation, Hydraulic Performance Data Tal	ole, Conceptual Design Figure(s)		
	Koadway Name. Waterbody Name and Town Name: Optimal Standards Stream Simulation Bridge 3-Sided Box Culvert Open-Bottom Culvert Arch Culvert Velocity comparable to reference reach at bankfull flow and range of base flows (if no target species present) Velocity comparable to reference reach at bankfull flow and range of base flows (if no target species present) AOP study for target species Designed for sea level rise and/or increased precipitation projections based upon Hydraulic Design Requirements Crossing profile matches existing natural stream based upon reference reach Profile designed using vertical adjustment potential (VAP) 1 foot (minimum) of natural substrate material above any required scour protection material Channel cross section designed to minic low flow depths of natural channel Includes grain size analysis and bed mobility/scour stability analysis HEC-RAS Equivalent Software:	Readway Name. Waterbody Name and Town Name: Optimal Standards Base Standards Optimal Standards APP Design: Stream Simulation Modified Hydraulic Design Bridge Stream Simulation: Pipe Culvert with Embedment Open-Bottom Culvert Box Culvert with Embedment Box Culvert with Embedment Open-Bottom Culvert Box Culvert with Embedment Box Culvert with Embedment APP doubly compatable to inference reach a banifull flow and range of base flows (If no target species present) Velocity comparable to natural channel at banifull flow Proleign off or sal level rise and/or increased precipitation projections based upon Hydraulic Design Requirements Crossing profile to match existing natural stream grade upstream and/or downstream of the recipitation projections based upon Hydraulic Design Requirements Changing profile stas level rise and/or increased precipitation projections based upon Hydraulic Design Requirements Crossing profile to match existing natural stream grade upstream and/or downstream of the designed to mimic low flow depths of natural channel Includes grain actural substrate material above any required scour protection material Natural bottom substrate > 2 feet for all structures > 8 feet in span; 2 25% of opening beight for all span; 2 25% of opening beight for all span; 2 6 feet Includes grain actural substrate materis anoble; 1.44 feet and height 2 6 feet <t< td=""></t<>	

Table A.3 Hydraulic Design Data

	Project Background
	Bridge ID # and Group # (if applicable):
	Roadway Name:
	Waterbody Name:
	City/Town Name:
	Proposed Crossing Span (feet):
	Highway Functional Classification:
	Planned Construction Dates:
	Structure Service Life (years):
1	Project within Special Flood Hazard Area and/or Floodway? If yes, provide FEMA Flood Zone details and elevation (if available):
	Crossing Geometry
	Existing Condition Low Chord Elevation (feet):
	Proposed Condition Low Chord Elevation (feet):
	Hydraulic Design Requirements
	Design Storm Event:
Exist	ing Condition Design Storm Event Elevation (feet):
Propos	ed Condition Design Storm Event Elevation (feet):
	Freeboard Requirement (feet):
	Freeboard Provided (feet):
	Design Scour Event:
	Check Scour Event:
	Climate Check Event:
	Pass Climate Check Event (Y/N/N.A.):
	Tidal and Sea Level Rise Influence
Is th	e crossing currently impacted by tidal flow? (Y/N):
	Climate Change Projection Horizon Year:
v	/ill the crossing be impacted by the future MHHW based upon sea level rise for the Climate Change Projection Horizon Year? (Y/N/N.A.):

Conceptual Design Figures

- <u>Four</u> different Conceptual Design Figures provided in Appendix B of Manual
 - Designer should choose the figure that most similarly represents their crossing and complete to associated table
- Available as PDF and CAD .dwg files for editing

Option #1 - Bridge

Option #2 – Open-Bottom Structure

Option #3 – Box Culvert

Option #4 - Pipe

Final Design Considerations

- Construction Dewatering
 - Minimize impacts to the streambed, surrounding environment, and aquatic animals
 - Cofferdam and flow diversion guidance
- Operation & Maintenance (O&M)
 - Key items for construction and post-construction inspection
 - O&M plan guidance and standard practices for stream crossings

Project Cost and Scoping

- Currently \$1M added to costs on a project by project basis in the TIP when crossing is undersized.
- Planning future crossing assessments in advance for upcoming crossing replacements in the TIP to determine high priorities for upgrades.
- RIDOT has \$8M/Year in Protect money to add to projects if needed in the future.
- Ongoing advocacy for adding resiliency/protect funds.

Projects in Design

- The Manual is in effect as of <u>10/15/21</u> for all new RIDOT projects
 - Standards are incorporated in Army Corps RI PGP (effective March 2022)
 - We anticipate more projects in pipeline from new federal infrastructure bill (IIJA), which will use the Manual
- Projects underway:
 - West River Bridge, Providence
 - Round Swamp Bridge, Jamestown

Key Takeaways

- All RIDOT owned road-stream crossings must be designed using the Road-Stream Crossing Design Manual
 - ✓ The Manual is now available on the RIDOT website!
- New or replacement crossings should always aim to meet the <u>Optimal Standard</u> for each Design Criteria.
 - ✓ With RIDOT approval: A crossing may meet the <u>Optimal Standard</u> for some Design Criteria and only meet the <u>Base Standard</u> for other Design Criteria.
 - Don't forget to include Checklist A.1 (if applicable), A.2, and A.3 in the 30% design submission.
- Replacement or retrofit projects should use the <u>Assessment Handbook</u> prior to the Design Manual whenever possible.

Questions?

Annique Fleurat afleurat@vhb.com

Alisa Diaz Richardson alisa.richardson@dot.ri.gov Ariana Wetzel awetzel @vhb.com

Nicole Lineberry nicole.leporacci@dot.ri.gov

www.facebook.com/ridotnews

West River Bridge

- West River St over West River in Providence
 - Planned for advertisement by end of 2022

Round Swamp Bridge

- North Road over West Passage (tidal) in Jamestown
 - Planned for ~2024

Source: Jamestown Press

